Exploring Deep Recurrent Q-Learning for Navigation in a 3D Environment

نویسندگان

  • Rasmus Kongsmar Brejl
  • Hendrik Purwins
  • Henrik Schoenau-Fog
چکیده

Learning to navigate in 3D environments from raw sensory input is an important step towards bridging the gap between human players and artificial intelligence in digital games. Recent advances in deep reinforcement learning have seen success in teaching agents to play Atari 2600 games from raw pixel information where the environment is always fully observable by the agent. This is not true for first-person 3D navigation tasks. Instead, the agent is limited by its field of view which limits its ability to make optimal decisions in the environment. This paper explores using a Deep Recurrent QNetwork implementation with a long short-term memory layer for dealing with such tasks by allowing an agent to process recent frames and gain a memory of the environment. An agent was trained in a 3D first-person labyrinth-like environment for 2 million frames. Informal observations indicate that the trained agent navigated in the right direction but was unable to find the target of the environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Teaching a Machine to Read Maps with Deep Reinforcement Learning

The ability to use a 2D map to navigate a complex 3D environment is quite remarkable, and even difficult for many humans. Localization and navigation is also an important problem in domains such as robotics, and has recently become a focus of the deep reinforcement learning community. In this paper we teach a reinforcement learning agent to read a map in order to find the shortest way out of a ...

متن کامل

Transfer Deep Reinforcement Learning in 3D Environments: An Empirical Study

The ability to transfer knowledge from previous experiences is critical for an agent to rapidly adapt to different environments and effectively learn new tasks. In this paper we conduct an empirical study of Deep Q-Networks (DQNs) where the agent is evaluated on previously unseen environments. We show that we can train a robust network for navigation in 3D environments and demonstrate its effec...

متن کامل

designing and implementing a 3D indoor navigation web application

​During the recent years, the need arises for indoor navigation systems for guidance of a client in natural hazards and fire, due to the fact that human settlements have been complicating. This research paper aims to design and implement a visual indoor navigation web application. The designed system processes CityGML data model automatically and then, extracts semantic, topologic and geometric...

متن کامل

Faster Deep Q-learning using Neural Episodic Control

The research on deep reinforcement learning which estimates Q-value by deep learning has been attracted the interest of researchers recently. In deep reinforcement learning, it is important to efficiently learn the experiences that an agent has collected by exploring environment. In this research, we propose NEC2DQN that improves learning speed of a poor sample efficiency algorithm such as DQN ...

متن کامل

RTP-Q: A Reinforcement Learning System with Time Constraints Exploration Planning for Accelerating the Learning Rate

Reinforcement learning is an efficient method for solving Markov Decision Processes that an agent improves its performance by using scalar reward values with higher capability of reactive and adaptive behaviors. Q-learning is a representative reinforcement learning method which is guaranteed to obtain an optimal policy but needs numerous trials to achieve it. k-Certainty Exploration Learning Sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EAI Endorsed Trans. Creative Technologies

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018